\qquad
Practice Exam 1
November 19, 2019
Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution you will receive little or no credit!

1. Let A be a operator defined on some seperable Hilbert space \mathcal{H} with dense domain $\mathcal{D}(A)$. Define the following quadratic form:

$$
q_{A}(f)=\langle f, A f\rangle
$$

for $f \in \mathcal{D}(A)$. Prove that A is symmetric if and only if the above quadratic form is realvalued.
2. Let A be a densely defined symmetric operator on some seperable Hilbert space \mathcal{H}. Let A be positive, that is $\langle f, A f\rangle \geq 0$ if $f \in \mathcal{D}(A)$. Prove that

$$
\|(A+I) f\|^{2} \geq\|f\|^{2}+\|A f\|^{2}
$$

Secondly, show that $\operatorname{Ran}(A+I)$ is closed if A is a closed operator. Finally, prove that A is essentially self-adjoint if and only if the equation

$$
A^{*} f=-f
$$

has no nonzero solutions.
3. Define the following operator on $L^{2}[0,2 \pi]$:

$$
A=-\frac{d^{2}}{d x^{2}}
$$

with domain

$$
\mathcal{D}(A)=\left\{f \in C^{2}(0,2 \pi): f(0)=f(2 \pi), f^{\prime}(0)=f^{\prime}(2 \pi)\right\} .
$$

Prove that A is self-adjoint and show that $\sigma(A)=\left\{n^{2}: n \in \mathbb{Z}\right\}$. Moreover compute the corresponding eigenspaces, the spectral projections and compute the spectral decomposition. In addition, let $B=\sqrt{A}$, prove that $\sigma(B)=\mathbb{N}$.
4. Let μ be a polynomially bounded measure. Define

$$
F(x)=\int_{0}^{x} d \mu \quad \text { and } \quad G(x)=\int_{0}^{x} F(t) d t
$$

Prove that $\mu=G^{\prime \prime}$ in the sense of distributions (either the general or tempered).
5. Let $F \in O_{M}(\mathbb{R})$ and $T \in \mathscr{S}^{\prime}(\mathbb{R})$. Let ' denote the derivative on \mathscr{S}^{\prime}. By using the definition of multiplication and ${ }^{\prime}$, prove that $(F T)^{\prime}=F^{\prime} T+F T^{\prime}$.
6. Let U be a bounded open subset of \mathbb{R}^{n} with a C^{1} boundary. Let $u \in W^{k, p}(U)$. Prove that if $k<\frac{n}{p}$, then $u \in L^{q}(U)$, where $\frac{1}{q}=\frac{1}{p}-\frac{k}{n}$. Moreover, show that

$$
\|u\|_{L^{q}(U)} \leq C\|u\|_{W^{k, p}(U)}
$$

7. Prove that if $u \in W^{1, p}(0,1)$ for some $1 \leq p<\infty$, then $u=\tilde{u}$ a.e., where $\tilde{u} \in A C(0,1)$. Moreover show that $\tilde{u}^{\prime} \in L^{p}(0,1)$.
8. Let $\mathcal{F}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{2}\left(\mathbb{R}^{n}\right)$ be the Fourier transform. That is:

$$
\mathcal{F}(f)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i\langle x, \lambda\rangle} f(x) d x
$$

Prove that \mathcal{F} is a unitary operator on $L^{2}\left(\mathbb{R}^{n}\right)$.

