	Name:	
MA 8663 Section 01	Practice Exam 1	November 19, 2019

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution you will receive little or no credit!

1. Let A be a operator defined on some separable Hilbert space \mathcal{H} with dense domain $\mathcal{D}(A)$. Define the following quadratic form:

$$q_A(f) = \langle f, Af \rangle$$

for $f \in \mathcal{D}(A)$. Prove that A is symmetric if and only if the above quadratic form is real-valued.

2. Let A be a densely defined symmetric operator on some separable Hilbert space \mathcal{H} . Let A be positive, that is $\langle f, Af \rangle \geq 0$ if $f \in \mathcal{D}(A)$. Prove that

$$||(A+I)f||^2 \ge ||f||^2 + ||Af||^2$$
.

Secondly, show that $\operatorname{Ran}(A + I)$ is closed if A is a closed operator. Finally, prove that A is essentially self-adjoint if and only if the equation

$$A^*f = -f$$

has no nonzero solutions.

3. Define the following operator on $L^2[0, 2\pi]$:

$$A = -\frac{d^2}{dx^2}$$

with domain

$$\mathcal{D}(A) = \left\{ f \in C^2(0, 2\pi) : f(0) = f(2\pi), f'(0) = f'(2\pi) \right\}$$

.

Prove that A is self-adjoint and show that $\sigma(A) = \{n^2 : n \in \mathbb{Z}\}$. Moreover compute the corresponding eigenspaces, the spectral projections and compute the spectral decomposition. In addition, let $B = \sqrt{A}$, prove that $\sigma(B) = \mathbb{N}$.

4. Let μ be a polynomially bounded measure. Define

$$F(x) = \int_0^x d\mu$$
 and $G(x) = \int_0^x F(t) dt$.

Prove that $\mu = G''$ in the sense of distributions (either the general or tempered).

5. Let $F \in O_M(\mathbb{R})$ and $T \in \mathscr{S}'(\mathbb{R})$. Let ' denote the derivative on \mathscr{S}' . By using the definition of multiplication and ', prove that (FT)' = F'T + FT'.

6. Let U be a bounded open subset of \mathbb{R}^n with a C^1 boundary. Let $u \in W^{k,p}(U)$. Prove that if $k < \frac{n}{p}$, then $u \in L^q(U)$, where $\frac{1}{q} = \frac{1}{p} - \frac{k}{n}$. Moreover, show that $\|u\|_{L^q(U)} \le C \|u\|_{W^{k,p}(U)}$

7. Prove that if $u \in W^{1,p}(0,1)$ for some $1 \leq p < \infty$, then $u = \tilde{u}$ a.e., where $\tilde{u} \in AC(0,1)$. Moreover show that $\tilde{u}' \in L^p(0,1)$.

8. Let $\mathcal{F}: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ be the Fourier transform. That is:

$$\mathcal{F}(f) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} e^{-i\langle x, \lambda \rangle} f(x) \ dx$$

Prove that \mathcal{F} is a unitary operator on $L^2(\mathbb{R}^n)$.